Ch. 1 Dimensional Analysis

. What is dimensional analysis?

- Dimensional analysis is a useful method that can be used to mathematically cancel out units in order to obtain a desired unit.
. Conversion factors are useful for dimensional analysis (conversion factors are ratios or mathematical relations used to convert one unit to another i.e. $\mathrm{g} / \mathrm{mol}$ or $1 \mathrm{ft}=12 \mathrm{in}$)
SI unit prefixes

Prefix	mega	kilo	deci	centi	milli	micro	nano	pico
Symbol	M	k	d	c	m	μ	n	p
Value	10^{6}	10^{3}	10^{-1}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}

example: $1 \mathrm{~g}=1000 \mathrm{mg}$

Common conversion factors

$1 \mathrm{ft}=12$ in	$1 \mathrm{~min}=60 \mathrm{~s}$	$1 \mathrm{mi}=1.609 \mathrm{~km}$	1 mole $=6.02 \times 10^{23}$ atoms (particles)

. Practice

A Nissan GTR R35 has a top speed of 196 mph . Convert this value to km / h.
$\frac{196 \mathrm{mi}}{\mathrm{h}} \times \frac{1.609 \mathrm{~km}}{1 \mathrm{mi}}=315 \frac{\mathrm{~km}}{\mathrm{~h}}$

. Practice

For an experiment you need 25 mg of NaCl , how many grams are there in 25 mg of NaCl ?
$25 \mathrm{mg} \mathrm{NaCl} \times \frac{10^{-3} g}{1 \mathrm{mg}}=$?

. Practice

Convert 150 g to kg
$150 \mathrm{~g} \times \frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}=$?

. Practice

Convert 25 mg to g

Solutions

. Practice

A Nissan GTR R35 has a top speed of 196 mph . Convert this value to km / h.
$\frac{196 \mathrm{mi}}{h} \times \frac{1.609 \mathrm{~km}}{1 \mathrm{mi}}=315 \frac{\mathrm{~km}}{\mathrm{~h}}$

. Practice

For an experiment you need 25 mg of NaCl , how many grams are there in 25 mg of NaCl ?
$25 \mathrm{mg} \mathrm{NaCl} \times \frac{10^{-3} g}{1 m g}=0.025 \mathrm{~g} \mathrm{NaCl}$
. Practice
Convert 150 g to kg
$150 \mathrm{~g} \times \frac{1 \mathrm{~kg}}{10^{3} g}=0.15 \mathrm{~kg}$

. Practice

Convert 25 mg to g
$25 \mathrm{mg} \times \frac{10^{-3} \mathrm{~g}}{1 \mathrm{mg}}=0.025 \mathrm{~g}$

